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The uniform and smooth focal profile of the Nike KrF laser [S. Obenschain, et.
al., Phys. Plasmas 3, 1996 (2098)] was used to ablatively accelerate 40 µm thick
polystyrene planar targets with pulse shaping to minimize shock heating of the
compressed material. The foils had imposed small amplitude sinusoidal wave
perturbations of 60, 30, 20, and 12.5 µm wavelength. The shortest wavelength is
near the ablative stabilization cutoff for Rayleigh-Taylor growth. Modification of
saturated wave structure due to random laser imprint was observed. Excellent
agreement was found between the two dimensional simulations and
experimental data for most cases where laser imprint was not dominant.
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I. Introduction
The design of direct-drive inertial confinement fusion will require accurate

computational modeling of the growth of the ablative Rayleigh-Taylor  (R-T)

instability1-6. There are, however, inevitable approximations and limitations in
both the numeric and the physics packages of these simulation codes. The design
codes are therefore compared with nearer-term laser-target experiments. For
diagnostic access, as well as ease in matching two dimensional (2-D) numerical
simulations, experiments frequently use planar targets with imposed one

dimensional (1-D) sine wave perturbations2,7-9. Recently there have been some

doubly-transverse experiments10 [sin(x) × sin(y)], as well as multimode initial

perturbations11; the linear growth rates for these targets are predicted to be
similar to the matching wave number 1-D modes, with differences in the

saturation12,13. The treatment of random 2-D noise and, in particular, 2-D

random laser imprint, is near the limit of experimental 14-17 and numerical15

capabilities. Accurate modeling of experiments with 2-D (x,y) initial
perturbations requires three dimensional (3-D) (x,y,z) radiative hydrodynamic
codes with sufficient temporal and spatial resolution that stresses the capabilities
of current computers.

We have studied the growth of small amplitude 1-D perturbations2,14 using
the ultra-uniform laser profile of the Nike KrF laser. Despite the improved laser
beam uniformity, our experimental images show random 2-D perturbations that
arise from both the laser imprint and the target manufacturing flaws.  These 2-D
imperfections alter the wave structure at saturation.

II Experimental Setup
The experiments described here were performed using nominally 40 µm thick

polystyrene [CH] planar targets (density 1 g/cm3 ) with planar sinusoidal
perturbation wavelengths ranging from 12.5 µm to 60 µm. These wavelengths are
believed to cover the interesting range for our experimental conditions, from
near the predicted short wavelength cutoff (� 7 µm) to longer than the fastest
growing modes. The target was positioned with the surface perturbation grooves
parallel to the 15° angle between the X-ray diagnostic line of sight and target
normal (perturbation wavenumber is perpendicular to the diagnostic plane).
This ensured that the diagnostic X-rays did not obliquely intersect the tips of the
spike in the highly nonlinear state. The initial perturbation amplitudes were
much less than the perturbation wavelength, typically A0 = 0.05 or 0.125 µm. The
surface with the perturbations faced the laser drive. The emphasis of our
experiment was to study the growth of these waves before saturation effects
dominated.

The initial perturbations were too small to be diagnosed with the x-ray

system. White light interferometry18 was therefore used to confirm the initial
amplitude of the target surface nonuniformity before each shot.
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The laser focus was a 750 µm full-width half-maximum (FWHM) diameter
spot with a central 400 µm flat top; the sum of the tilts or lowest-order curvature
within the flat top were measured on two beams to be on the order of 5%. The
target was driven with 33 of the 56 beams, which reduced the actual tilt and
curvature of the total profile on target. The targets were accelerated with 1.6 kJ
total, with a nominal peak laser intensity of 7.5×1013 W/cm2.

The laser pulse consisted of a foot pulse followed by a main pulse (see Fig. 1).
The amplitude and duration of the foot was designed to significantly reduce the
shock heating from the main pulse and allow the target adiabat (pressure
divided by Fermi-degenerate pressure) to remain below the value of 3 for the
first 3.5 ns of the 4 ns main drive pulse. The foot pulse in this experiment had
approximately 4 ns duration, with an amplitude that was 3-5% of the main pulse.
At the end of the foot the laser intensity rose to full power in 1 ns. The FWHM of
the flat-top main pulse peak power was 4 ns. The time t=0 is defined to be when
the main pulse has reached 50% of peak intensity in the rising edge.
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Figure 1. Normalized log plot of the laser intensity at focus versus time for this
experiment. Peak intensity is 7.5 x1013 W/cm2. The point where the main drive

reaches 50% of peak power in the rising edge is defined as t=0.

One dimensional simulations (FAST1D19), using the best estimate of the total
laser time history on target (the sum of all 33 beams), is shown in Fig. 2.  It can be
seen that the shock breakout from the foot pulse occurred 1.5 ns before the main
shock. As a result, the back 1/3 of the target decompresses slightly before the
main shock recompresses it. This results in a higher isentrope for the rear portion
of the target, but leaves the main part of the target at nearly the same isentrope
as if the two shocks arrived in unison at the rear of the target. The peak density
achieved was only slightly lower than with the ideal timing and so the peak
Rayleigh-Taylor growth rate is estimated to be reduced by less than 10%. The
initially 40 µm thick targets are still predicted to have compressed to about 10 µm
thickness, which is less than the wavelengths of the initial impressed
perturbations. The actual laser pulse was used for the simulations, so any small
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changes in the growth rate due to the early foot pulse are accounted for in the
simulation results.
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Figure 2. One dimensional simulation of the target position as a function of time.
Laser drive comes from above. The peak density, achieved at t=0.5 ns, is near
5 g/cm3.

The target traveled approximately 250 µm by the end of the laser pulse, so
there should not be significant target curvature in the central 400 µm of the spot.
Side-on imaging was not available for the series of shots reported here, as the
twelve laser beams used for x-ray generation were combined to improve the R-T
diagnostic. However, this series was virtually identical to previous experiments
with side-on steak camera images; those images agreed well with the 1-D

simulations.20

Figure 3. Schematic of experimental layout using the crystal imager. For clarity
only one crystal is shown. Spatial scales are distorted as the image is 200 cm
away from the crystal, but the crystal is 10 cm from the target.

The primary diagnostic tool for these experiments was an x-ray crystal
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imager 21,22 coupled to an x-ray framing camera23 (see Fig. 3). This diagnostic
measured the attenuation of a single spectral line through the target from a
backlighter source. The imager was a spherically curved quartz crystal with a
curvature radius of 20 cm. The crystal orientation of the quartz reflected the 1.48
keV H-like magnesium lines from the backlighters at a Bragg angle of 6.3
degrees. The reflectivity bandwidth of the crystal is only 0.01-0.02 Å wide;
therefore the calculations of the x-ray transmission through the target could
assume monochromaticity. We could therefore accurately determine the areal
mass redistribution that arises from the Rayleigh-Taylor instability in the cold
(< 20 eV), high density portion of the target. Two crystals were used in this
experiment to put two 20X magnified images on the framing camera.

The framing camera had four independent gating strips which were driven
with 250 ps voltage pulses. The nonlinear dependence of gain on voltage for
microchannel plates reduced the effective optical gating time to 200 ps or less.
Each image covered two strips, allowing four time frames per shot. As the
experiment progressed, crystals were damaged by target debris with some loss
of image quality. Crystals were replaced as new ones became available. The
resolution and alignment of the system was tracked by a grid shot at the
beginning of each day. The total system resolution including the framing camera
is shown in Fig. 4.
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Figure 4. Modulation transfer function derived from a fit to edge resolution data.
Lines mark the 4 wavelengths studied in this experiment.
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Figure 5. Full image from the X-ray framing camera with the resolution test grid
taken each day. There are two images, each spread across two imager strips. The
grid wires are thick enough (28 µm) to allow accurate modeling of the point
spread function to the edges. The small hole punched in the grid provide a
landmark for identifying the center point for laser alignment.

If an image was significantly degraded, those images were dropped from the
analysis. A sample framing camera picture using the calibration grid is shown in
Fig. 5.

Although the total overlapped Nike laser focal profile is very uniform with

short scale length nonuniformities of less than 0.2% rms 24,25 (excluding beam to
beam interference at very short scale lengths),  there is still some laser
imprinting. For our laser drive, and for 40 um thick plastic targets, we have
previously shown that the laser imprinting can be numerically modeled as a 100

Å rms random surface perturbation14. The modulated targets had machining
flaws which were measured by the white light interferometer. We estimate a
total noise input (laser imprint plus target flaws) of 150 Å rms, with the largest
peak-to-valley modulations reaching 300 to 450 Å. The random structure with
spatial frequencies closest to the fastest growing unsaturated R-T modes will
appear most clearly in the images. In the experimental images, we observed
bubbles 10-20 µm in diameter after 2 ns of the main laser drive. This 2-D
structure could interfere with or alter the imposed 1-D perturbations in the
nonlinear stage of evolution.
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III Simulations
Simulations of the experiments were performed with the Naval Research

Laboratory FAST code. Detailed discussion of this code is available in Refs. (26)
and (2). The FAST2D code can model the evolution of the ablative and classical
Richtmyer-Meshkov27 [R-M] and Rayleigh-Taylor5  instabilities, with multi-
mode amplitudes that range from the very linear to the strongly nonlinear. The
code can treat both initial target mass nonuniformities and laser temporal and
spatial nonuniformities as the seeds for the R-M and R-T instabilities. The
simulations include spatially nonuniform laser energy deposition, evolution of
perturbed shocks and distorted target material interfaces, a multigroup - variable
Eddington non-local thermodynamic equilibrium (non-LTE) radiation transport
package28, and tabular real equations of state. FAST is designed to accurately
simulate highly nonlinear vortical flows in regions of strong density and
pressure gradients needed to model the R-T instability near saturation.
Simulation solutions are post-processed to allow direct comparison with data.

IV. Results
Sections of the framing camera digitized film images from which some of the

data was obtained are shown in Figs. 6 and 7. Significant 2-D structure is visible
in the later time images for all resolved wavelengths, at amplitudes which are
larger than the framing camera noise. Figures 8 and 9 shows the experimental
data as compared to the simulation results. The data points are obtained by
converting the film density to linear light intensity and then taking the logarithm
multiplied by the cold opacity for polystyrene. The averaged 1-D Fourier
transform of the areal mass density gives the amplitude of the fundamental and
harmonics.  The simulation calculates a 2-D mass distribution which is post
processed by calculating the x-ray line of sight absorption, then taking the
Fourier transform of the transmitted x-ray intensity. The framing camera
modulation transfer function (MTF) is multiplied to the transform and the
inverse transform returns the simulated light intensity distribution at the camera.
As with the experimental data, the mass density structure is recreated and the
Fourier components are found. Each plot shows both the averaged fundamental
and second harmonic Fourier amplitudes of the sine wave perturbations for each
time resolved image as well as the 2-D simulation prediction with and without
MTF correction. The solid points on the plots are the data obtained for the
specific experimental measured time history used in the simulation.  All other
points are from shots which were very similar. Error bars of ± 25 %  have been
assigned to the data points due to the significant averaging over the vertical
direction required to reduce camera noise.  This also averages the effect of laser
imprint which will increase scatter in the data.

Figure 8 shows the results for 60 and 30 µm wavelength cases. The growth
rates predicted by the code agree with the data for the 60 and 30 µm wavelength
perturbations. Some of the discrepancy between the data and simulation is the
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a.) 60 µm wavelength b.) 30 µm wavelength

Figure 6. Image sections used for analysis of a) 60 µm wavelength sine wave, and
b) 30 µm wavelength sine wave. In a) the times are (from top to bottom): 2.07 ns,
2.57 ns, and 3.17 ns. In b) the times are: 0.87ns, 1.52 ns, 1.72 ns, and 2.37 ns.

a.) 20µm wavelength b.) 12.5 µm wavelength

Figure 7. Image sections used for analysis of a) 20 µm wavelength sine wave, and
b) 12.5 µm wavelength sine wave. In a) the time are (from top to bottom): 0.87 ns,
1.52 ns, 1.92 ns, and 2.57 ns. In b) the times are 1.52 ns and 2.17 ns.
Please note the new images added alongside the original images used in the paper. These
are from a much later run (Feb. of 1999) with twice the spatial resolution and lower
noise. The 12.5 um wavelength is growing at the predicted rate and saturates at the
amplitude predicted. The earlier data was not absolutely conclusive on this issue.
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Figure 8. The Fourier amplitude for the first and second harmonics (black and
red, respectively) of the areal mass density from the simulation, multiplied by
the MTF.  The dashed black line is the Fourier amplitude of the fundamental
without the MTF correction, showing the size of the reduction. The closed boxes
are experimental data from the specific laser shot simulated, open symbols are
from similar shots. The 60 µm wavelength results are in a); the 30 µm wavelength
results are in b). The initial amplitude in both cases is 0.125 µm.
Error bars are 

�
 200 ps in the horizontal and ± 25% in the vertical. The noise floor

for the fundamental wavelength is shown as a dashed line.
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Figure 9. The Fourier amplitude for the first and second harmonics (black and
red, respectively) of the areal mass density from the simulation, multiplied by
the MTF. The dashed black line is the Fourier amplitude of the fundamental
without the MTF correction, showing the size of the reduction.  The closed boxes
are experimental data from the specific laser shot simulated, open symbols are
from similar shots. The 20 µm wavelength results are in a); the 12.5 µm
wavelength results are in b). The initial amplitude in both cases is 0.125 µm.
Error bars are 

�
 200 ps in the horizontal and ± 25% in the vertical. The noise floor

for the fundamental wavelength is shown as a dashed line.
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uncertainty in determining the frame times of the camera; timing checks
performed on the camera are within the ±200 ps error of the digitizing
oscilloscopes used to obtain the timing, X-ray, and optical signals. Larger scatter
in the data is noticeable for the 60 µm data due it’s slower growth rate making
initial conditions more important and increased competition from laser imprint.

Figure 9 shows the results for the 20 and 12.5 µm wavelength cases.
The MTF correction is larger for these shorter wavelengths and thus errors in
determining the MTF are important. For our best estimate of the MTF, using a
gaussian fit to model grid wire resolution for two sizes of wire, the data
continues to agree with the simulation.
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Figure 10. Comparison of the simulation results and the experimental data of the
Fourier amplitude of the 20 µm wavelength for the initial amplitude of 0.125 µm
(black curve and boxes) and 0.05 µm (red curve and boxes). Error bars are 

�
 200

ps in the horizontal and ± 25% in the vertical. The noise floor for the fundamental
wavelength is shown as a dashed line.

Figure 10 shows the effect of reducing the initial amplitude of the 20 µm
perturbation from 0.125 µm to 0.05 µm. A reduced initial perturbation amplitude
should introduce a time delay to when the perturbations reach an experimentally
observable amplitude. The first three data points, when fitted to a straight line,
give a 400 ps delay. The 2-D simulation predict a 350 ps delay, in reasonable
agreement with the code.

Between 0 and +2 ns the RT growth rate for each wavelength predicted by the
FAST2D code can be closely approximated by using the FAST1D code to find the

acceleration g and ablation velocity Vab = m
•

/ ρpeak  with the ablative and profile

stabilization model29,30,5  γ
α

β  κγ
1+ κΛ

 κς ab= − , ωιτη α=0.2, and β=3. The

agreement with a simple analytical model indicates that, in the simulation,
saturation effects do not alter the perturbation growth rate early in the pulse and
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that the target adiabat is not changing rapidly in this time window. The above
formula predicts that the 60 µm wavelength growth rate is 80% of kg , while the

12.5 µm growth rate is reduced to 50% of kg , mostly due to the ablative

stabilization term. For wavelengths shorter than 12.5 µm, the ablative
stabilization term will increase faster than the classical growth rate, resulting in a
lower total growth rate. Therefore, the experimental results covers all of the
fastest growing modes.

 The random 2-D (x,y) perturbations caused by laser imprint and target
nonuniformities will grow along with the impressed 1-D (x) modes. The model
for the laser imprint used in the 2-D (x,z) code is based on the theoretical and
measured laser focal profile created by induced spatial incoherence (ISI) optical

smoothing on Nike.24,25  Using this ISI model, the 2-D (x,z) simulations predict
that the laser imprint on a perfectly flat target, amplified by the R-T instability,
will be dominated by 20-30 µm modes.  It can be expected that the actual 3-D
(x,y,z) modes would predominantly produce round bubbles in the targets with
similar wave number spectra. The largest growth rate of an imprint bubble can
be estimated by modeling it as a Bessel function J0(kr) with k=2π/20 µm-1 . Three
dimensional simulations show the growth rate for this Bessel bubble to be at least

as large as for a 20 µm 1-D sine wave13, and the bubble will saturate at a far
larger amplitude than the sine wave.

The late time images in Fig. 6a for the 60 µm case show that the trough of the
imposed perturbation has been divided into 20 µm troughs. This is not a normal
saturation mode for an R-T amplified sine wave. The division can be explained
by the merging of the faster growing 20 µm ISI bubbles with the 60 µm sinusoid,
resulting in the bubbles being tiled into a regular perturbation which develops
into the observed trough cutting mode.  The linear growth rate of the bubbles is
approximately 1.4 times larger than the 60 µm 1-D mode, so the 2-D bubbles will
reach comparable amplitudes by 2 ns into the main drive, and begin to
nonlinearly interact with the impressed mode. The tiling effect is a nonlinear
interaction between the two modes.

Figure 11 shows a simulation image of the spatial density distribution of the
60 µm wavelength mode (including ISI fluctuations) at 3 ns, with the
corresponding simulation of the X-ray diagnostic lineout path and the camera
MTF. At the bottom is a selected lineout from the experimental image at 3.17 ns
converted to the mass perturbation and set to have the same average density as
the simulation. Our ability to match an experimental lineout to the simulation
shows that the code is reasonably modeling the tiled 20 µm bubbles coupling into
the 60 µm wave.
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Figure 11 a) The density distribution in the target at 3.0 ns from the simulation of
the 60 µm wavelength case. b) The simulated framing camera lineout of this
simulation accounting for the integration along the X-ray path and the camera
MTF. c) A selected subsection lineout from the image in Fig. 6a which resembles
the simulation result.

The experimental images also show that the 2-D laser imprinting has coupled
into the impressed shorter wavelength 1-D modes. The 30 µm wavelength
images in Fig. 6b show that the laser imprint is well matched to the sine wave
and again the bubbles tile into the trough late in time. The 20 µm wavelength
images in Fig. 7a show that laser imprint is beginning to distort the straight walls
of the sine wave perturbation, causing the walls to bend and break up. The
saturated behavior of 1-D and 2-D modes is different. As the 1-D (x) sine wave
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mode saturates into broad flat troughs with thin walls between, the bubble
will continue to grow at the fast linear rate, allowing the initially smaller
perturbation ( 400 Å ) to catch up to and exceed the amplitude of the 1-D mode.
Such bubbles will curve and tip the walls of the 1-D perturbation. This will be
important to the shortest wavelength 1-D modes since these walls can be very
thin as the wave reaches saturation; simulations of the 12.5 µm sine wave show
the walls being only 3-4 µm thick in saturation.  The larger scatter in the 12.5 µm
data amplitude in Fig. 9b is mostly due to the interference of the random laser
imprint.  Also, in Fig. 10, the larger disagreement for the .05 µm initial amplitude
case versus the .125 µm initial amplitude case is at least partially due to
competition with laser imprint, since the laser imprint in the later time images
was clearly visible.

V. Summary
 The simulation results are in good agreement with the experiments for all

the perturbation wavelengths. The mass imprinting from the random ISI laser
perturbations produces visible effects in all cases. These effects are adequately
handled by the 1-D imprint model in simulations when the bubbles tile into the
wavelength troughs, as evidenced by the agreement with the data. Departure
from the predicted amplitudes will occur if 2-D mode structure reaches
saturation amplitudes where the 2-D structures will dominate.  Interaction
between the 1-D and 2-D modes is experimentally observed both in the case
where the 2-D mode growth is faster than the impressed mode (60 µm sine wave)
and where the growth rates should be comparable (20 µm sine wave).
The nonlinear interaction of the 1-D and 2-D  alters the saturated behavior of
both modes.

VI. Acknowledgment
 The authors acknowledge the excellent technical support of W. Webster,
A. Mangassarian, N. Nocerino, D. Hardesty, J. Bone, G. Holland, and J.
Hardgrove. The administrative support by D. Gibson was essential to our
success. Targets were provided by Dr. C. Hendricks and his colleagues at Schafer
Corp. Engineering support was provided by J. Sawyer,  J. Peterson, L. Granger,
and D. Williams of Commonwealth Technology, Incorporated and F. Mora of
East Coast Engineering. The spherically curved imaging crystals were provided
by Dr. A. Faenov and T. Pikuz of VNIIFTRI, Moscow, Russia.
Helpful conversations with Drs. D. Colombant, R. H. Lehmberg (NRL), A. V.
Deniz (SAIC), and M. Klapisch (ARTEP), are gratefully acknowledged. This work
was supported by the U.S. Department of Energy.



15

References

1. S. E. Bodner, D. G. Colombant, J. H. Gardner, R. H. Lehmberg, S. P.
Obenschain, L. Phillips, A. J. Schmitt, J. D. Sethian, R. L. McCrory, W. Seka, C. P.
Verdon, J. P. Knauer, B. B. Afeyan, H. T. Powell, Phys. Plasmas, 5,1901 (1998).

2. J. H. Gardner, A. J. Schmitt, J. P. Dahlburg, C. J. Pawley, S. E. Bodner, S. P.
Obenschain, V. Serlin, Y. Aglitskiy, Phys. Plasmas, 5, 1935 (1998).

3. R. L. McCrory, and C. P. Verdon, "Computer Modeling and Simulation in
Inertial Confinement Fusion," International School of Plasma Physics Piero
Caldirola: Inertial Confinement Fusion (1988), edited by A. Caruso and E.
Sindoni (Editrice Compositori, Bologna, Italy, 1988), pp. 83-124.

4. J. Lindl, Phys.Plasmas, 2, 3933 (1995).

5. J. H. Gardner, S. E. Bodner, J. P. Dahlburg, Phys. Fluids B, 3, 1070 (1991).

6. J. Nuckolls, L. Wood, A. Thiessen, and G. Zimmerman, Nature, 239, 139 (1972);
D.H.Sharp, Physica 12D, 3 (1984).

 7. B. A. Remington, S. V. Weber, S.W. Haan, J.D. Kilkenny, S. G. Glendinning,
R. J. Wallace, W. H. Goldstein, B. G. Wilson, J. K. Nash, Phys. Fluids B, 5, 2589
(1993).

8. S. G. Glendinning, S. N. Dixit, B. A. Hammel, D. H. Kalantar, M. H. Key, J. D.
Kilkenny, J. P. Knauer, P. M. Pennington, B. A. Reminton, R. J. Wallace, S. V.
Weber, Phys. Rev. Lett., 78, 3318 (1997).

9. H. Azechi, M. Nakai, K. Shigemori, N. Miyanaga, H. Shiraga, H. Nishimura,
M. Honda, R. Ishizaki, J. G. Wouchuk, H. Takabe, K. Nishihara, K, Mima, A.
Nishiguchi, T. Endo, Phys.Plasmas, 4, 4079 (1997).

10. M. M. Marinak, B. A. Remington, S. V. Weber, R. E. Tipton, S. W. Haan, K. S.
Budil, O. L. Landen, J. D. Kilkenny, R. Wallace, Phys. Rev. Lett., 75, 3677 (1995).

11. M. M. Marinak, S. G. Glendinning, R. J. Wallace, B. A. Remington, K. S. Budil,
S. W. Haan, R. E. Tipton, J. D. Kilkenny, Phys. Rev. Lett., 80, 4426 (1998).

12. J. P. Dahlburg, J. H. Gardner, Physical Rev. A, 41, 5695, (1990).

13. J. P. Dahlburg, J. H. Gardner, G. D. Doolen, S. W. Haan, Phys. Fluids B, 5, 571
(1993); J. P. Dahlburg, D. E. Fyfe, J. H. Gardner, S. W. Haan, S. E. Bodner, G. D.



16

Doolen, Phys.Plasmas, 2, 2453 (1995).

14. C. J. Pawley, K. Gerber, R. H. Lehmberg, E. A. McLean, A. N. Mostovych, S.
P. Obenschain, J. D. Sethian, V. Serlin, J. A. Stamper, C. A. Sullivan, S. E. Bodner,
D. Colombant, J. P. Dahlburg, A. J. Schmitt, J. H. Gardner, C. Brown, J. F. Seely,
T. Lehecka, Y. Aglitskiy, A. V. Deniz, Y. Chan, N. Metzler, and M. Klapisch,
Phys.Plasmas, 4, 1969 (1997).

15. R. J. Taylor, J. P. Dahlburg, A. Iwase, J. H. Gardner, D. E. Fyfe, O. Willi, Phys.
Rev. Lett., 76, 1643 (1996).

16. S. G. Glendinning, S. N. Dixit, B. A. Hammel, D. H. Kalantar, M. H. Key, J. D.
Kilkenny, J. P. Knauer, P. M. Pennington, B. A. Remington, J. Rothenberg, R. J.
Wallace, S. V. Weber, Phys. Rev. Lett., 80, 1904 (1998).

17. D. H. Kalantar, M. H. Key, L. B. DaSilva, S. G. Glendenning, J. P. Knauer, B.
A. Remington, F. Weber, and S. V. Weber, Phys. Rev. Lett., 76, 3574 (1996).

18. Details available from Phase Shift Technology, Inc., 1430 East Fort Lowell,
Tuscon, Arizona 85719

19. J.H. Gardner and S.E. Bodner, Phys. of Fluids 29, 2672 (1986).

20. V. Serlin, S. P. Obenschain, J. D. Sethian, E. A. McLean, J. P. Dahlburg, A. J.
Schmitt, J. H. Gardner, T. Lehecka, A. V. Deniz, Bull.Am.Phys.Soc., 42, 1892 (1997).

21. Y.Aglitskiy, T. Lehecka, A. Deniz, J. Hardgrove, J. Seely, C. Brown, U.
Feldman, C. Pawley, K. Gerber, S. Bodner, S. Obenschain, R. Lehmberg, E.
McLean, M. Pronko, J. Sethian, J. Stamper, A. Schmitt, C. Sullivan, G. Holland,
and M. Laming, Rev.Sci.Instrum., 68, 806 (1997).

22. Y.Aglitskiy, T. Lehecka, S. Obenschain, S. Bodner, C. Pawley, K. Gerber, J.
Sethian, C. Brown, J. Seely, U. Feldman, G. Holland Applied Optics, 37, 5253
(1998).

23. O.L. Landon, P.M. Bell, J.J. Satariano, J.A. Oertel, D.K. Bradley, Ultrahigh and
 High-Speed Photography, Videography, and Photonics ‘93, SPIE Proc. No. 2002
 (SPIE, Bellingham, WA 1995) p.1; K.S. Budil, T.S. Perry, P.M. Bell J.D. Hares
 P.L. Miller, T.A. Peyser, R. Wallace, H. Louis, D.E. Smith, Rev. of Sci.
 Instrum. 67, 485 (1996).



17

24. S. P. Obenschain, S. E. Bodner, D. Colombant, K. Gerber, R. H. Lehmberg, E.
A. McLean, A. N. Mostovych, M. S. Pronko, C. J. Pawley, A. J. Schmitt, J. D.
Sethian, V. Serlin, J. A. Stamper, and C. A. Sullivan, J. P. Dahlburg, J. Gardner, Y.
Chan, A.V. Deniz, J. Hardgrove, T. Lehecka, and M. Klapish, Phys. Plasmas, 3,
2098 (1996).

25. A.V. Deniz, T. Lehecka, R. H. Lehmberg, S. P. Obenschain Optics Comm., 147,
402 (1998).

26. M. H. Emery, J. P. Boris, and J. H. Gardner, Appl. Phys. Lett., 41, 808 (1982).

27. R. D. Richtmyer, Comm. Pure Appl. Math., 13, 297 (1960); E. E. Meshkov, Fluid
Dyn., 4(5), 101 (1969).

28. J. P. Dahlburg, M. Klapisch, J. H. Gardner, A. J. Schmitt, and A. Bar-Shalom, J.
Quant.Spectros. Radiat. Transfer, 54, 113 (1995).

29. S. E. Bodner, Phys.Rev.Lett., 33, 761 (1974); H. Takabe, K. Mima, L. Montierth,
and R. L. Morse, Phys. Fluids, 28, 3676 (1985).

30. M. Tabak, D. H. Munro, J. D. Lindl, Phys. Fluids B, 2, 1007 (1990).


